9 Protein - Primed Replication of Bacteriophage 29 DNA
نویسندگان
چکیده
Unlike circular genomes in which the conventional replication fork machinery can accomplish the copy of the complete molecule, the requirement of a DNA/RNA molecule to prime DNA synthesis imposes replication strategies to avoid the loss of genetic information contained at the very end of the lagging strand in linear chromosomes since DNA polymerases are unable to start de novo DNA synthesis. Thus, once the most terminal primer is removed, a short region of unreplicated single-stranded DNA (ssDNA) will remain at the end of the chromosome that would eventually lead to a continuous shortening of the daughter DNA molecule after successive rounds of DNA replication (the end-replication problem). Therefore, it is essential to guarantee replication of the chromosome ends, that otherwise would cause cell death. Organisms containing linear genomes have developed novel replication strategies to overcome such a problem by either yielding head–tail concatemers, most of them making use of terminal redundancies as phages T4, T7 and SPP1, or by the circularisation and further rolling circle replication of their chromosomes, as it occurs in phage [reviewed in (Salas & de Vega, 2008)]. In higher eukaryotes telomerase extends directly the 3 ́ end, producing an overhanged ssDNA end (Kornberg & Baker, 1992) that finally can invade homologous double-stranded telomeric tracts, enlarging and protecting chromosome ends (Verdun & Karlseder, 2007). Other organisms, as bacteriophages, animal viruses as adenovirus and human hepatitis B virus, mitochondrial plasmids, linear chromosomes and plasmids of Streptomyces (Salas, 1999), as well as several virus infecting Archaea, as halovirus (Bamford et al., 2005; Bath et al., 2006), possess replication origins, constituted by inverted terminal repetitions (ITR) together with a terminal protein (TP), placed at both ends of their linear chromosomes (Salas, 1991). In these cases, the location of the two replication origins allows both strands to be replicated continuously, without requiring asymmetric complexes of the replicative DNA polymerase with other accessory proteins to control the different mechanics of continuous and discontinuous synthesis (Blanco et al., 1989). The TP provides the OHgroup of a specific serine, threonine or tyrosine to prime initiation of DNA replication from the ends of the linear chromosome, circumventing the end replication problem, the TP remaining covalently linked to such 5 ́-termini of the genome (TP-DNA) (Salas, 1991, 1999; Salas et al., 1996).
منابع مشابه
Initiation of phi 29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication.
Bacteriophage phi 29 DNA replication is initiated when a molecule of dAMP is covalently linked to a free molecule of the terminal protein, in a reaction catalyzed by the viral DNA polymerase. We demonstrate that single-stranded DNA molecules are active templates for the protein-primed initiation reaction and can be replicated by phi 29 DNA polymerase. Using synthetic oligonucleotides, we carrie...
متن کاملTerminal protein-primed DNA amplification.
By using appropriate amounts of four bacteriophage phi 29 DNA replication proteins--terminal protein, DNA polymerase, protein p6 (double-stranded DNA-binding protein), and protein p5 (single-stranded DNA-binding protein)--it has been possible to amplify limited amounts of the 19,285-bp-long phi 29 DNA molecule by three orders of magnitude after 1 hr of incubation at 30 degrees C. Moreover, the ...
متن کاملInvolvement of phage ϕ29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication
To initiate phi29 DNA replication, the DNA polymerase has to form a complex with the homologous primer terminal protein (TP) that further recognizes the replication origins of the homologous TP-DNA placed at both ends of the linear genome. By means of chimerical proteins, constructed by swapping the priming domain of the related phi29 and GA-1 TPs, we show that DNA polymerase can form catalytic...
متن کاملProtein-primed DNA replication: role of inverted terminal repeats in the Escherichia coli bacteriophage PRD1 life cycle.
Escherichia coli bacteriophage PRD1 and its relatives contain linear double-stranded DNA genomes, the replication of which proceeds via a protein-primed mechanism. Characteristically, these molecules contain 5'-covalently bound terminal proteins and inverted terminal nucleotide sequences (inverted terminal repeats [ITRs]). The ITRs of each PRD1 phage species have evolved in parallel, suggesting...
متن کاملIn vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation.
Bacteriophage PRD1 replicates its DNA by means of a protein-primed replication mechanism. Compared to Mg2+, the use of Mn2+ as the metal activator of the phage DNA polymerase results in a great stimulation of the initiation reaction. The molecular basis of the observed stimulatory effect is an increase in the velocity of the reaction. The phage DNA polymerase is also able to catalyze the format...
متن کاملDisclosing the in vivo organization of a viral histone-like protein in Bacillus subtilis mediated by its capacity to recognize the viral genome.
Organization of replicating prokaryotic genomes requires architectural elements that, similarly to eukaryotic systems, induce topological changes such as DNA supercoiling. Bacteriophage 29 protein p6 has been described as a histone-like protein that compacts the viral genome by forming a nucleoprotein complex and plays a key role in the initiation of protein-primed DNA replication. In this work...
متن کامل